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In 1921 Karman [ 1 1 considered the problem of the motion of a viscous 

incompressible fluid under the influence of an infinite plane disk, uni- 

formly rotating around its axis. For this case the Navier-Stokes equa- 

tions can be reduced to a system of ordinary differential equations with 

a single independent variable. Given below is a generalization of the 

Karman problem to the case of the motion of a liquid having a finite 

electrical conductivity, in the presence of a magnetic field which is 

uniform and perpendicular to the plane of the disk at infinity. The 

electrical conductivity of the disk is assumed equal to zero. 

I. The magneto-hydrodynamic equations for a viscous incompressible 

fluid with finite electrical conductivity u in the steady state have the 

form 12 1 

divH=O, div V=O, 
1 

(W)H=H(vV)+=AH (1.1) 

Here V is the velocity vector of the liquid, II is the magnetic field 

intensity, p is the pressure, p is the density and v is the kinematic 

viscosity. 

We introduce a system of cylindrical coordinates r, 4 and z, in which 

the plane z = 0 coincides with the plane of the disk. The angular velo- 

city of the rotating disk is designated by Q.The boundary conditions of 

the problem have the form 
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VP = 0, V, = Qr, v* = 0 at z=O 

v, = 0. v, = 0, H,=O, H,=O, H, = H, at Z=+OZ (1.2) 

The axial component of the velocity does not vanish at infinity, but 
tends toward some limiting value subject to determination. This is be- 
cause of the fact that, inasmuch as the liquid near the disk moves 
radially under the action of a centrifugal force, in order to insure 
continuity there must exist a steady influx from infinity in the direc- 
tion of the disk. Since the magnetic field is constant and a change in 
sign of the field at infinity does not change the form of Equations (1.1) 
it follows that, taking account of the fact that H, is an even function 

and Hr and H+ are odd with respect to z. it is possible to write the 
boundary conditions for the components of the field in the Plane of the 

disk 

H, = G, H,=O at z=O (1.3) 

The magnitude of the axial component of the field HZ at z = 0 is 
subject to determination. Thus the problem reduces to a consideration of 
the flow in one (the upper, say) half-plane. We shall seek a solution in 
the form 

V, = Qru (51, v, = Qrv (51, v, = V&w (t) 

H, = lf4np Qrf KL H, = d4x Brg (ZJ, H, = 1/4npOv h (6) (1.4) 

P+ 
H,z + H,2 + HZ* 

8n 
= - pi&P (5) 

The radial and tangential components of the velocity and of the 
magnetic field are assumed here to be proportional to the distance from 
the axis of the rotation disk, and the vertical components Vz and HZ and 
the total pressure (the sum of the hydrodynamic and magnetic pressures) 
are constant throughout each horizontal plane. Projecting (1.1) on the 
axis of the cylindrical coordinates and substituting (1.41, we obtain a 
system of ordinary differential equations for dimensionless variables 

h’ + 2f = 0, w’ + 2u = 0 (k = 1 / 4nsv) 
kf” + hu’ = wf’, u” + hf’ + f2 - g2 = wu‘ + u2 - v2 
kg” + hv’ = wg’, v” + hg’ + 2fg = WV’ + 2uv (1.5) 
kh” + hw’ = wh’, P’ + hh’ + w” = wwl 

Here, the prime indicates differentiation with respect to [. The last 
of these equations can be integrated: 

P + 20’ + ‘7 = const W) 

It is clear that the total pressure P is found to be a constant 



1362 V.V. Sychev 

independent determined from the remaining equations. We notice here that 
the fourth of these equations (1.5) can be written in the form 

kf’ + hu = wf 

by use of the first two. 

The third equation of (1.5) can be obtained from 
two equations of (1.5). Therefore, the final system 
are to be integrated can be written in the form 

h’ + 2f= 0, kf’ + hu = w/ 
w’ + 2u = 0, kg” + hv’ = wg’ 
u”+hf’+f2-gg2=wu’$uZ-vUB 

v” + hg’ + 2fg = WV’ + 2uv 

(1.7) 

(1. ‘7) and the first 
of equations which 

(1.8) 

The boundary equations, on the basis of (1.2). (1.3) and (1.4). take 

the form 

u = 0, v = 1, w=o, f=O, g=o for c=O 

u = 0, f = 0, h = x = ,/4;;nv for <=OO (1.9) 

v = 0, g = 0, 

The number of these conditions exceeds the order of the system (1.8) 
because the point at infinity is a singular point. 

2. We investigate the asymptotic behaviour of the system (1.9) as [ 
approaches 00. We designate 

w(m)=---k (2.U 

Then the solution in the neighborhood of the point at infinity can be 
put in the form of an expansion in exponentials 

The main terms of the expansion have the form 

f = Ale- aJt + Azevaz’~ + . ., g = Bleealh~ + B2eMazhc + . . . (2.3) 

h = x + ‘2 e-a~“< + ‘2 ,--+A~ + . . . 

u = Al -$- (kul -- 1) eMalAr, + A2 -$- (kaz - 1) evaaAc + . . . 

v = B1 + (kul - 1) e+aAC + Bz + (kuZ - 1) e-+‘c + . . . 
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Here Al, A2, B1 and B2 are arbitrary constants subject to determina- 
tion. In addition to h we have five such constants in conformity with the 
number of boundary conditions for [ = 0. From the expression (2.2) for 
the coefficients aI, a2 it follows that the disturbance of the magnetic 
field, and the velocity field die out, and the solution of the form con- 
sidered exists only when 

The magnitude S determines the ratio of the magnetic force, character- 
ized by the stress H20/4n, to the inertial force pVzm2, or the ratio of 
the density of magnetic energy Rq2/8n to the density of kinetic energy of 
the material, 1/2p V 2. At the same time it is equal to the square of 
the ratio of the velirity of propagation of the Alfven waves to the velo- 
city of the current. If the intensity of the magnetic field at infinity 
is sufficiently large so that S > 1, a disturbance of a wave type may be 
propagated an indefinite distance from the disk; so that flow of this 
type may be considered physically impossible. Thus the region of exist- 
ence of the desired solution is limited to the interval of values of the 
parameter 0 < S < 1. 

We consider now the behavior of the solution near 5 + 0. The principal 
terms of the expansion of the desired function in the neighborhood of the 
point 6 = 0 have the form 

u = u’ (0) 5 + . . . ( v = v’ (0) t + . . . ( \w = - 24’ (0) 5” f . . . (2.5) 

f=-$WWW+...? g=g’(o)g+..., h=h(0)+$L(O)u’(O)~S+... 

Since u’(0) > 0. h(0) > 0, it follows that at the surface of the disk 
the radial component of the magnetic field is negative and the axial com- 
ponent has a minimum. Thus it can be assumed that the magnetic lines of 
the axisymmetrical part of the field Ea = (H,, HZ) diverge as they 
approach the disk. 

3. The solution of the system of equations (1.8) may be obtained by a 
numerical method. However, this presents considerable difficulty in view 
of the large number of boundary conditions (1.9). Therefore. there is 
some interest in the consideration of approximate methods of solution. 
One of these methods may be based on the assumption that the parameter 

k=1 11 
4ncW = -7 (3.1) 

which characterizes the ratio of the electrical resistivity to the visco- 
sity of the liquid, is large compared to unity. This assumption is usual- 
ly made; thus. for mercury. the magnitude of k is of the order 6 x 106. 
For k >> 1. the flow region may be divided into two parts: the viscous 
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boundary layer at the surface of the disk, with thickness 6, * 1, and 

the external stream in which the influence of the finite electrical con- 
ductivity is greater than that of the viscosity; this has a character- 
istic normal dimension 6, * k. The calculation of the flow in these 
regions can be carried out by a method of successive approximations in 
which the original condition for computing the boundary layer is the 
velocity field in the absence of a magnetic field, already known from 
solutions obtained in [ 9,3 I. The system of equations of the first 
approximation for the outer portion of the current differs from (1.8) by 
the absence of the second derivative of the velocity in the last two 
equations, since their ratio to the remaining terms will be of order l/k. 
This corresponds to the fact that the role of viscosity is unimportant 
here. The solutions obtained must be matched along the outer boundary of 

the boundary layer: in other words, the boundary conditions for the com- 
putation of the outer part of the flow are determined by the asymptotic 
values of the variables in the boundary layer. In practice, the boundary- 
value problems for both regions may be approximately solved, for example 
by integral methods [ 1 1. 

4. In conclusion, we shall derive the expressions for the components 
of the vectors of current density and electric field intensity, which 

can be determined on the basis of the equations [2 1 

j = -&- rot H. E= aj+[H, V] (4.1) 

Using the solution of (1.4), we obtain 

j, = - v- __?- cf~~rg~, 
4nv 

j+ = 1/- P SZ%f *, 
4nv 

i, = I/ ii Qg 
n (4.2) 

E, = Jf4npv0 (P - kg’ + wg - vh), E,=O 

E, = ~‘-%$lW (vf - ug) + 2k -.Qvg (4.3) 
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